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ABSTRACT

Collecting and analyzing data in large-scale instant messag-
ing (IM) networks is a mostly unexplored problem. IM net-
works are data-rich environments where one can obtain in-
formation at various levels of granularity, from simple status-
change logs to detailed, text-based conversations. In this
paper, we present an architecture for collecting user sta-
tus changes over IM networks. Then we define in terms
of a number of distinct similarity measures a general pat-
tern analysis framework for discovering sets of users that
show similar instant messaging behavior. In particular, this
framework helps us answer two natural queries: “Who be-
haves like user X?” and “What is the probability that user
X is in status S € {Online, Away, Busy, Off-line} at time
T?” Each measure we use can be efficiently computed. The
highlight of this paper is that, without collecting any ex-
plicit user-specific association information such as buddy-
lists, we are able to obtain reliable answers in the form of
user-behavior clusters. Using a dataset consisting only of
the status-change behavior of 207 users collected over a 67
day period we experimentally evaluate the different proper-
ties of the measures our framework uses.
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1. INTRODUCTION

Instant Messaging, abbreviated IM, is a type of communi-
cations service that enables you to create a kind of private
chat room with another individual in order to communi-
cate in real time over the Internet, analagous to a telephone
conversation but using text-based, not voice-based, commu-
nication. Typically, the instant messaging system alerts you
whenever somebody on your private list is online. You can
then initiate a chat session with that particular individual.

In 1968, Doug Engelbart’s presentation at the Fall Joint
Computer Conference, was a live online hypermedia demon-
stration of the pioneering work that Engelbart’s group had
been doing at SRI [5]. In this presentation, Engelbart showed
how the computer could be used to deal with everyday tasks.
The majority of consisted of him using the computer to plan
out a set of things. All of this information was in simple hy-
pertext which contained many different methods of organi-
zation, each appropriate to the task at hand. That “Mother
of All Demos” (on display in the Exhibit on The Informa-
tion Age at the Smithsonian Museum of American History)
perhaps was the beginning of human-computer interaction
as we see it today: Pervasive and Ubiquitious. Instant mes-
saging was invented way before ICQ or other chat programs
flooding the Internet in the early 1990’s. We know for a fact
that it existed in the form of the command talk on UNIX. IM
networks are fast becoming a de-facto way for personal com-
munication. IM technology has significantly advanced to let
users communicate accross networks, in remote areas and
in a highly-pervasive, highly-ubiquitios manner. Ironically,
specifically of interest, to the knowledge discovery commu-
nity, will be the “ideal” way this form of communication
generates large amounts of data that so far (to the best of
our knowledge) not been effectively analyzed. It is of sig-
nificant interest to industrial and goverment organizations
to understand the broad knowledge-sharing networks that
exist within the organization and IM communication is fast
becoming a standard platform for such knowledge sharing.
Apart from this fundamental interest in knowing “Who IM’s
whom”; a non-intrusive analysis such as the one we present



in this paper will prove very helpful as a testbed in social-
network analysis, finding interpersonal relationships, behav-
ioral analysis and general high dimensional cluster analysis.
The objective of this paper is to highlight the framework
for data-collection and present a sampling of the kind of
challenges that arise in instant message mining. We were
able to achive exciting results using relatively simple anal-
ysis techniques and outline the issues we faced during this
data collection and analysis.

The technical contributions of this paper are organized in
three parts: a) IMSCAN data collection architechture b)
Pattern analysis and c) Status prediction. Within pattern
analysis, we describe techniques and resuls for mutli-user
pattern analysis, two-user pattern analysis, and single user
usage analysis. On the status prediction front, we provide
a simple probailistic tool to determine the time vs. possible
status for a given user. We have developed a novel data
collection framework to track and collect informaton on IM
networks to determine the individual status changes. We
then try to highlight the need for developing effective min-
ing techniques and metrics to analyze and assimilate infor-
mation from such status change logs. We describe several
user-grouping metrics for association rules based clusters,
PageGather [10] based grouping and edit distance based sim-
ilarity to generate groupings of users.

In the next section we have tried to outline the previous
work in a variety of domains that we felt was related to
the concept of mining instant messaging networks. Sec-
tion 11 describes the data collection framework which is
an imporant contribution of this paper. A discussion on
the scalability and privacy issues for IMSCAN is also in-
cluded. In sections 3 and 4 we have tried to separate the
algorithmic description of the analysis technique from the
results obtained where possible, but at times, where we felt
a simple result of the technique would be the best explaina-
tion we have taken the liberty to do so. Section 5 describes
the experiments conducted on the dataset and presents the
corresponding results. An interesting observation can be
made: Between the elapsed time intervals 5000-5700 and
5900-6500 no activity appears to occur. This time period
for data collection corresponds to the blackouts that occured
throughout Northeastern United States last Summer and no
activity could be recorded. A flavor of the general nature
of the dataset can be obtained by viewing Figure ??. The
histograms in this figure outline the overall usage summary
of various users in the four possible states. It was a very
challenging task to design algorithmic solutions to find the
correlations between two and more users to discern patterns
in user behaviour. At the same time it was very interesting
to observe that simple regression models could effectively
predict the user probability for a status change as shown in
figure ?77.

NOTE to Reviewers: a) We would like to emphasize that
the data collection for the purpose of this study was non-
obtrusive and did not collect any personal or demographic
information about the participants.

2. RELATED WORK

We are unaware of any precedent for instant message mining.
Recently, Getoor summarized nicely that a key challenge for

data mining is tackling the problem of mining richly struc-
tured datasets, where the objects are linked in some way [6].
Links among the objects may demonstrate certain patterns,
which can be helpful for many data mining tasks and are
usually hard to capture with traditional statistical models.
IM mining presents one such application domain that gen-
erates a relatively large number of such richly structured
datasets. Largely the interest in web and hypertext mining
has steadily grown, and so has the interest in mining social
networks, security and law enforcement data. Newsgroup
mining has also recieved considerable attention recently as a
problem for social behaviour analysis as reported by Agrawal
et al [1].

Since there are potentially very large number of users in
an IM network the IMSCAN framework needs to provide a
robust solution for finding associations between large user-
sets. This problem is similar in many ways to frequent item-
set mining (in fact we aptly name the term user-set in the
same vein). There are inherent problems with the concept of
finding rules based simply on their support and confidence.
Silverstein et. al [12] describe the pitfalls of using support as
the threshold for pruning the rule-set. This problem become
severe in environments such as IM mining. Due to the fact
that relationships between user-sets (analogous to item-sets)
can exist in-spite of the fact that the user-sets may not be
present in significant number of transactions. In this paper
we have adopted an interactive density based approach to
mining association rules where we first plot all the associa-
tion rules on a support vs. confidence graph. Then based
on the density of a particlar region, we investigate the rules
to generate the relationships.

There are several related areas in pattern analysis for large
datasets that display properties similar to the problem of
mining instant messaging networks to determine the rela-
tionships between users. Social network analyis and graph
based techniques come to mind immediately. Several prob-
lems in web-mining are also closely related including finding
related but unlinked pages to generate index pages automat-
ically or “auto-indexing” [10]. We make use of the Page-
Gather algorithm in a similar setting for clustering users
based on their time-;status logs.

Since September 11, 2001, and the terrorist attacks against
the United States, the area of Counter-Terrorist Data Min-
ing has seen a surge of interest and papers relating to ap-
plications of old data mining techniques to a new field of
study. Most papers attempt to utilize the study of Social
Network Analysis in order to find potential links between
suspicious groups of people. Two such, current, works in-
clude the Mapping of Terrorist Cells [8] and Assymetric Plan
Detection [4].

A discussion on finding direct correlations for Counter-Terrorist

activities was provided in the manuscript 'Mapping Net-
works of Terrorist Cells’ by Krebs [8] and directly concerns
the social network analysis surrounding the Sept. 11 attacks.
In this paper we outline the issues we faced while attempt-
ing to find such direct correlations between users based on
their online-activity.

The work on Assymetric Plan Detection[4] attempts to co-



ordinate a social network of people and places with links of
seemingly trivial actions using a CBR modelling technique.
They succinctly outline the majority of issues that any ’el-
egant’ algorithm faces in such domains : Massive data sets,
and noise. Mining instant messaging networks also displays
these characteristics:

e Massive data sets consisting of an evergrowing num-
ber of users changing states at varying intervals of
time leading to a stream of status change information
filtering-in by the second.

e Data Collection in instant messaging networks is noisy
and state changes are affected by noise resulting from
any unintensional reflection of a status change. There
is no way of determining if a given status change was
intensional or the result of a loss of power or other
interfering factors.

The analysis framework we describe has applications in such
information rich, yet noisy data environments such as counter-
terrorism. We believe that IMSCN provides a new realm of
data collection and analysis which has gone mostly unex-
plored so far. We reported a basic outline of the data collec-
tion framework as pertinent to the data mining efforts for
counter-terrorism in a recent submission [11]. In this paper
we present the pattern analysis algorithms, status predic-
tion algorithms, the corresponding results, and the result-
ing discussion on creating a scalable and robust IMSCAN
framework.

3. STATE PREDICTION

The first problem that we wanted to look at was that of
calculating user availability expectation. In order to acheive
this we looked at a user’s usage time for a particular service
over several weeks in an attempt to determine certain habits
that a user may have. In addition to the particular times
that users are expected to be online and offline, we can also
develop a metric to estimate how long it will take a user
to move to an online state, given that they are currently
unavailable.

In order to find a user’s availability, we separated the IM
data set into two different categories, available and unavail-
able. A user that is online was said to be available, while any
other status for this user is marked as being unavailable (e.g.
Idle, Away, and Offline). We then recorded the unavailable
times for all users, our data structures recording the start,
end, and duration of each users’ unavailability. These un-
availability values gave us information about the user over
the 10 weeks in which the data was collected. In Figure 1,
the bars in the diagram represent times when a user is un-
available, the gaps between the bars represent when a user
is available.

For each interval of time, during a week period, we looked
at the averages of the total 10 weeks of user activity. Based
upon the average unavailability, and the average duration of
time which the user was unavailable, a probability is calcu-
lated for that time block. A representation of this data can
be found in Figure 1.

Monday | Tuesday Wenesday |
Week 1 - — — —
Week 2 —_— A — — 4
Week 2 — — —
Wook 10 | mm — — |
/’“'-ﬁh\'-| o~ ™ ___,/
Total ‘ M— N S S I
I

Figure 1: Estimating user usage time; the black bars
represent time periods a user is unavailable, the gaps
between represent the period a user is online. The
total represents the time period it will take a user
to return given that they are unavailable.

1. Availy,z, = 1 if User u is unavailable at Time x in
Week w, 0 if not.

2. Untily,¢,w = Number of time blocks until User u be-
comes available at Time x in Week w.

10 :
ity Availy z 4

3. Statusy,s = 10

10 :
. =1 Untily o
4. Duration, . = Zz—lliguw

Using this method it becomes possible to predict, with a
certain degree of probability, if a user will be online at a
certain time block within a week - along with how long it
will be until the user is likely to return.

When the data file is read in, sparse data structures are
created to store the time intervals which users are offline
for. The final structure contains 10 lists for each of the 10
weeks we collected data for. Each list contains the start,
duration, and end times of each users offline status. Using
this sparse design we were able to load the entire dataset into
memory, and ended up consuming only 1.2MB of memory.
This design is highly scalable and would accommodate for
a couple years of data to remain in memory before the need
of serializing data to disk should arrise.

The algorithm, as implemented, would benefit greatly from
more user data to process. It is important to note that while
10 weeks of data can provide interesting usage patterns, pe-
riods of a year or more could expose monthly, as well as
seasonal, patterns that users follow.

4. PATTERN ANALYSIS
4.1 Frequent User Set Mining

One of the initial attempts at finding associations between
two given users was through utilizing Assocation Rule Min-
ing. The first thing that was attempted was trying to find
a correlation between the status of one user against the sta-
tus of another. Association Rule Mining seemed the obvi-
ous solution for such a situation. In order to generate the
transactional data sets required to utilize ARM across our
data, the collected information has to be discretized into
time 'buckets’. Each transaction, Equation 2, represents a



bucket of time and a status, holding the set of users who
have the specified status for a majority of the given time,
Equation 1.

Sstz = {x,t}—>s (1)
TSt = {SSt17SSt27SSt37 -~-,Sstn} (2)

Where:

n = The id of the largest user being evaluated.

s = The user status being evaluated.

t = The time interval ("bucket’) being evaluated.
x = The id of the specific user being evaluated.

In order to find the frequently occuring user sets, along with
their associated support and confidence, an implementation
of Apriori [3, 2] was utilized. Using the newly created trans-
actions, assocations were found between one user at a given
status and another. Using this association, correlations be-
tween the actions of one user’s actions and another user’s
actions can be found.

4.2 Clustering

We cluster our data by partitioning the set of users into a
collection of disjoint subsets that cover all users. Our goal
is to maximize the number of nontrivial clusters (i.e., clus-
ters of cardinality at least two). The reason for this is that
instant messenging is primarily a person-to-person commu-
nication medium. Certainly, any two people who communi-
cate via an instant messenging service must be online at the
same time. More generally, we would like to know if with
any confidence significant patterns of usage emerge between
small groups of users.

4.2.1 General Clustering Algorithm

We used the following family of clustering algorithms that
are parameratized by a distance function D, introduced in
the description below, and a confidence threshold.

1. Choose a threshold «, which is a real number whose
range of possible values depends on D.

aii o Gnl

2. Let A = be an n X n matrix,

am1 - Amn |
where n is the number of ids and each matrix element
ai; is equal to D(i,7).

bll e bnl

3. Let B = be an n X n matrix,

bml o bmn h
where each matrix element b;; is defined as follows.

bii — 0 ifaijgfy,
“ 71 1 otherwise.

4. Each connected component in the graph induced by
the adjacency matrix B is a cluster.

The function D is a parameter we can change in order to
perform different clusterings. function. In our experiments,
we always base D on an assumed probabilistic model for the
data. (In order to symplify our notation, we use numbers to
represent the various user states according to the following
dictionary: 0 = offline, 1 = away, 2 = idle, 3 = online.) Let
E; s be the event that id ¢ is in state s. As is commonly
done, we model E; s probabilistically and assign to Pr(FE; ;)
the frequency of E; . Similarly, we assign to Pr(E; s A Ejs)
the frequency of E; s A Ej 5.

We use two different basic sets of functions for F'. The first
set {Dco, Dc1, De2, De3}, is based on conditional probabili-
ties. For k € {0,...,3}, D¢, is defined on inputs ¢ and j
as

Dustiy = { © if i =,
3\tJ) = min{Pr(E; s|E; ), Pr(E; s|Ejs)} otherwise.

Choosing D from this set results in an algorithm that is
essentially the same algorithm used in Pagegather [10].

The next set {Dio, D11, Di2, Di3} is based on the lift be-
tween two ids ¢ and j being in state s. One pitfall in using
conditional probabilities alone, as we did in the previous
section, is that, to determine associations, they do account
for the relative independence between E;, and Ej,, and
the relative independence between these two events is per-
haps a more natural notion of what an assoication is. Recall
that two events F' and G are considered to be independent
if Pr(F|G) = Pr(F) and Pr(G|F) = Pr(G). Using Bayes’
rule, one can confirm that the ratio between Pr(Ej; s A Ej; s)

. Pr(E; sAE; o .
and Pr(FE; ) - Pr(E; s, 1.e.,w known as lift. If
the lift has a value less than 1, it signifies a negative corre-
lation between E; ; and E; s whereas a value greater than 1

indicates a positive correlation.

For k € {0,...,3}, Dy is defined on inputs ¢ and j as

0 if i = j or Pr(E;s)

Dus(i7) = { Pr(Ejs A Eis)/(Pr(E;s) - Pr(E;s) otherwise.

4.3 Frequent Action Set Mining

Another form of analysis that became apparent was the min-
ing of frequent actions that a given user may act upon. By
removing any element of time from the data set and simply
focusing on the sequence of actions that a user takes pro-
vides a new level of analysis not available in the straight
user-status comparison metrics. Two unique aspects of ana-
lyzing the sequence of user actions are: It may become pos-
sible to detect similar user patterns across time zones and
geographical locations and it can be used to determine what
a user’s next action is going to be, based upon the series of
previous actions (aiding the State Probability analysis).

Su = {A1,A2,As, ..., A}
Sub, {{A1}, {42}, ..., {A1, A2, .., An}}
Largeu, v, {z C Suby,, Suby,||z| > |all|}
1/|Largeu, u,|

3
4
5
6

(
(
(
(

NN NN

DiStUa,Ub

It was decided that attempting to find correlation between



1000

time (seconds x 600)

...w—-ﬁ:#ﬂhk||‘|4|}n1|“xr!|-pmm«.‘:mmhm‘f.mAl'
— e

Figure 2: Intensity map showing the elapsed time
each user spent offline. The columns represent the
users by ID, and the rows are the time intervals.
The lightness of the rectangle at each ID/time in-
tersection represents the amount of time during that
interval spent offline. Due the the scale of the data,
only black (meaning no time was spent in time 0)
and white (meaning the entire interval was spent in
time 0) are evident.

two users’ action sequences would provide an interesting
comparison against the common state analysis. In order to
compare the state analysis clustering against the this non-
time based method, a metric had to be determined to com-
pute the distance between any two users. The series of ac-
tions taken were as follows: Firstly, the sequence of user ac-
tions, Equation 3, had to be constructed. This was done sim-
ply by moving through the log of user actions and construct-
ing the final non-time based sequence of actions. Then using
these sequences, the set of all possible sub-sequences, Equa-
tion 4, were computed. Using these sets of sub-sequences,
the longest common sub-sequence was found for each pair
of users, Equation 5. Finally, the distance between two par-
ticular users was computed by normalizing the length of the
largest common sub-sequence, Equation 6. Using this dis-
tance as a common metric of distance, they were placed into
a matrix and fed into an implementation of the Pagegather
algorithm [10].

5. EXPERIMENTS AND RESULTS

IMSCAN was tested on a data set consisting of 160 users,
identified by the numbers 1-160, sampled over a 62 day
(5437147 second) period. At each second, each users’ state
was sampled. Figure 5, for example, shows as an intensity
map the elapsed time each user spends in state zero (inten-
sity maps for the other states look similar to this one, but
are sparser). One interesting feature of our data is that be-
tween the elapsed time intervals 5000-5700 and 5900-6500
no activity appears to occur. This is because the experi-
ment was run during the blackouts that occured throughout
Northeastern North America last Summer and data gather-
ing was temporarily halted.

number of users

0 1 2 3 4 5

amount of seconds in state 0

Figure 3: This histogram shows the number of users
that are offline for the amount of time indicated on
the x-axis.

5.1 Distribution of States

Figures 5.1 shows a histogram of the number of users that
are offline for a given amount of time. Offline is by far
the most popular state. The other states are less popular
(with online being the least frequent state) but have similar
shapes.

5.2 Distribution of Cooccurences

Figure 7?7 shows the number of seconds each unordered pair
of users shares some state in common. The figure 5.2 shows a
histogram of this data, and figures 5.2—-5.2 show histograms
of the common number of seconds shared in a single state.
What is interesting about this data is that the distribution
figure reffig:freq.tot appears to have a gamma function, but
figures 5.2-5.2 do not (graphing figures 5.2-5.2 using a
log-linear axis did not reveal a discernable pattern. This
suggests that there is a least some independence between
two users sharing two or more different states.

5.3 State Prediction

A sample result set from this algorithm can be found in
Figure 9. In this figure two users are represented using the
notation ’Seriesl’ and ’Series2’. The vertical axis denotes
the time until a user is expect to return to an available state
while the horizontal axis represents the time, during an arbi-
trary day, at which the user is likely to be available. Within
Series] it becomes apparent that the user being represented
by the line typically doesn’t return to an online status until
approximately time 630, while a constantly-increasing re-
turn probability is immediately visible. In Series2, the user
takes a few trips offline throughout the day, apparent by
the jagged increases in time until user is expected to return.
Using this information it could be possible to develop plug-
ins for existing Instant Messaging services in order to aide
users in determining when members of their buddy list will
be likely to return.

5.4 Frequent User Set Mining
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Figure 4: This histogram shows the number of users
that are online for the amount of time indicated on
the x-axis.
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Figure 5: A histogram showing the distribution of
seconds a pair of users shares a common state.
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Figure 6: A histogram showing the distribution of
seconds a pair of users share offline.
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Figure 7: A histogram showing the distribution of
seconds a pair of users share offline.
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Num. Associations

80 % Confidence

Figure 10: Online Associations - Horizontal Axis
represents Confidence, Vertical, Number of Associ-
ations, Z-Axis, Support

In order to better view the distribution of the Association
Rules generated various methods for visualization [9, 7, 14,
13] were analyzed for intuitivity and degree of information
presented. CrystalClear [9] was chosen due to its ability to
reveal the distribution of associations effecitvely through-
out the total association rule set. From the Online Chart,
Figure 10, the extreme density of associations with low sup-
port, but high confidence, becomes apparent. Some sample
data from the Online Status, centered around the darkened
area can be found in Table ??. The sample data used has
a minimum of 99% Confidence and maximum of 5% sup-
port. Within the data shown, the actions of User B are
said to be associated with that of User A with the specified
support and confidence. While in the Offline Chart, Figure
11, the associations exhibit a diminished level of confidence,
perhaps implying the independence of associations between
users having an offline status at the same time as one an-
other.

User A - User B Support % Confidence %

29 - 81 1.5 100.0
133 - 81 1.5 100.0
71-81 1.5 100.0

Table 1: 10 Associations, ranked by confidence

User A - User B Support % Confidence %

59 - 160 94.5 10.1
138 - 160 94.5 8.5
39 - 160 94.5 8.9

Table 2: 10 Associations, ranked by support

5.5 Clustering

We first consider clustering using the conditional-probability-
based distance functions D.o and D.s. In finding the opti-
mal value for 7, i.e., the value that maximizes the number
of nontrivial clusters, we ran our clustering algorithms on
all v from 0.1 to 0.99, stepping by 0.1 between each trial.
Figures 5.5-5.5 show these results.
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Figure 12: A histogram showing the distribution of
D.o-based clusters by size for v = 0.88, which yields
an optimal number clusters (16).
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Figure 13: A histogram showing the distribution of
D.3-based clusters by size for v = 0.43, which yields
an optimal number clusters (22).

Next we look at the clusters obtained using the lift-based
distance functions Do and D;3. In finding the optimal value
for v, i.e., the value that maximizes the number of nontriv-
ial clusters, we ran our clustering algorithms on all gamma
from 1 to 358, stepping by 0.1 between each trial. Fig-
ures 5.5andb5.5 show these results.

6. FREQUENT ACTION SET MINING

Having computed the distance between users usign the met-
ric described within Frequence Action Set Mining, the dis-
tances, Table 3, were placed into the Pagegather algorithm
to find potential clusters. The clusters 4 that were found by
the algorithm all exhibit very common patterns that often
continue indefinitely.

User A User B Distance

70 100 0.663316582914573
13 70 0.663316582914573
4 70 0.663316582914573
20 118 0.949748743718593
37 118 0.949748743718593

100 118 0.949748743718593
13 118 0.949748743718593
4 118 0.949748743718593
20 37 1

20 100 1

37 100 1

Table 3: Sample Subset Distances

7. CONCLUSION AND FUTURE WORK

In this paper we describe a framework for collecting and min-
ing status information from instant messenging networks.
Our experiments show that the data gathered can be used
to predict the state of a user and to co-relate user access
patterns leading to clusters of users. In future we plan to
perform time-series analyse to spot outliers in user behavior.
In addition, instant messenging networks offer a variety of
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Figure 14: A histogram showing the distribution of
Dio-based clusters by size for v = 9.2, which yields an
optimal number clusters (3). This optimal number
held for all test values of vy € (6.3,12.1)
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Figure 15: A histogram showing the distribution of
D3-based clusters by size for v = 328.9, which yields
an optimal number clusters (7). This optimal num-
ber held for all test values of v € (302.2,355.6)

e Users: 1, 49, 71, 81, 92, 114

Pattern: 1212121212121212121212121212121212121212...

e Users: 4, 13, 19, 20, 37, 70, 100, 118

Pattern: 3030303030303030303030303030303030303030...

e Users 23, 74, 79, 80, 140

Pattern: 2020202020202020202020202020202020202020...

Table 4: Sample Subset Clusters, via Pagegather

other information which includes the user profiles and their
away messages. This text data can be utilized to further
co-relate users.

We believe that ample amount of information can be gath-
ered from instant messenging networks for identifying groups
of users and relations between their behavior patterns.
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association rules for text mining. In INFOVIS, pages The medium of Instant Messaging on the Internet is a well-

120-123, 1999. established means by which users can quickly and effectively
communicate with one another. Long utilized by the public
as a quick form of free communication, data mining tasks
have not been attempted over Instant Messaging. Addi-
tionally, on a corporate or government level, people are just
beginning to take notice of the potential that IM provides in
terms of the type of information that can be collected from
these networks. Many large software or internet based cor-
porations have started Instant Messaging networks of their
own, generally open to the public after registration, includ-
ing Time Warner, Yahoo, and Microsoft. Currently, some
of the most popular Instant Messaging networks are run by
some of the aforementioned companies:

AOL Instant Messenger
Yahoo! Instant Messenger
e MSN Instant Messenger
Various IRC Networks

Interestingly enough, even with all the variety of networks
available, their physical communication structures (client-
server architecture) and communication protocols (informa-
tion packets) are very similar to one another. Currently,
IMSCAN is best suited to collect data from the AOL in-
stant messenger (AIM) and IRC networks.

Online | The user’s client is connected to the central
server and the user is active (currently typ-
ing or moving the mouse on his computer).
Offline | The user’s client is not connected to the
messaging server at this time.

Idle | The user’s client is connected to the central
server, but the user is not active. Addition-
ally, how long a user has been idle can be
determined from their status.

Away | The user is logged on but away from the sta-
tion. Sometime users specify a text message
that can be viewed by anyone who wishes to
get more information about where they are
or why they are away. (e.g. ”Out to lunch.”,
?Watching TV.”) In fact a user can be ei-
ther idle, or active, while an away message
is explicitly up.

Table 5: Possible user statuses. As shown above an
IM client can be in one of the above statuses at a
given time.

Most Instant Messaging networks follow a Client-Server model
in which a server (or a cluster of servers) is maintained by a
service provider who controls traffic coming to and from the
server. Users who wish to utilize a certain network generally
register themselves with the service provider, then download
a provider-approved client for use on their network. Using
this client, users can connect to the central server in order
to be able to send and receive messages and collect account
information. A friend is generally another registered user
(the term friend is server-specific, but exists on almost all
[14] H. Zhang. Mining and visualization of association messaging networks). The concept is that a user may main-
rules over relational dbmss. tain a Buddy List under which a listing of their immediate
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Figure 16: Existing Instant Messaging networks
follow a client-server communication architechture.
Each messaging client when “online” has an individual
communiation thread with the messaging server. In turn the
server communicates the status of user’s “friends” to each
client.

friends may exist. Using this, the server then sends a client
updates based upon the statuses of their friends. Once the
connection process has completed, the server performs all
future communication in the form of Update Packets. An
update packet is sent from the server to a client whenever
an action occurs that is associated with him. For example,
when a friend performs a status change or if a message is
being sent to a user’s client. An unfortunate consequence of
the server maintaining such buddy lists is that it can impose
restrictions upon the maximum number of friends which a
user is allowed to maintain (this number is generally around
200). Since a client does not directly communicate with any
other connected client, and only the server, the server is then
in charge of disseminating any potentially useful information
from one client to another. Once such piece of critical infor-
mation is a user’s status. Table 5 describes a list of possible
statuses that a client can be in. Status is an attribute gen-
erally associated with a user’s client and often indicates how
a user responds to an Instant Message. Whenever a user’s
status changes, an update packet is relayed by the central
server to everyone who has the user on their buddy list.

Another important aspect of communication flow within an
Instant Messaging network is the traffic of messages between
users. The amount of information revealed concerning in-
stant messages is generally limited to the information which
is directly related to a user. Such information paths in-
clude chat rooms (a group discussion area where multiple
people can communicate with one another stimultaneously)
and private Instant Messages (messages sent directly from
one user to another).

Between the various information resources provided by In-
stant Messaging networks, there are a number of valuable re-
sources available to the average user. The data generated in
turn is very useful for data mining to analyze user behavior.
However, in order to utilize the flow of information offered by
these networks, a data collection framework need will have
to be established. This paper proposes one such framework
which has been developed. Information distributed by the
Instant Messaging networks can be broken down into two
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Figure 17: The IMSCAN Data Collection Frame-
work: In addition to the IM network components,
we use a set of tracking clients that monitor the
messaging server notifications and notify the track-
ing server. The tracking server pre-processes the
data and sends it for storage.

simple groups: User status-change and communication-flow
(Instant Messages, Chat Rooms).

The first item collected, user status change, can be achieved
relatively simply as the current structure of Instant Messag-
ing networks support the collection process. One interesting
feature, previously discussed, of Instant Messaging networks
is that of 'Buddy Lists’ - lists of friends of a user. The direct
benefit of this feature is the fact that whenever a buddy (a
member of a user’s buddy list) performs a status change, the
client is immediately notified of it by the server. Utilizing
this feature set, one could set up a client of their own, with
an arbitrary buddy list, and begin collecting information
about their ’buddies’ resulting actions. This is significant
due to the fact that most Instant Messaging networks don’t
require that someone actually be a friend of another user in
order to watch their status changes.

Using this standard model, it is relatively simple to set up
a tracking client whose only job is to collect pertinent infor-
mation about users that are on its buddy list - aptly named,
in this framework, Tracking Client. In order to maintain
a tracking client a Tracking Server is constructed which
manages the actions of its associated tracking clients. The
Tracking Server marshalls communication between an ar-
bitrary number of tracking clients and the database server.
Whenever a new Tracking Client spawns and connects to
the Tracking Server the server attempts to determine which
Instant Messaging users need to be tracked, from a list of po-
tential users. Due to the restrictions imposed by the various
Instant Messaging networks as to the size of a user’s buddy
list this distributed Tracking Client structure is required in
order to be able to track the maximum number of people at
any given time. An advantage to this distributed network is
that no one client is dependant upon for all tracking efforts
or network bandwidth usage. Each Tracking Client within
the network watches a given number of other clients in order
to verify that they are, in fact, still connected to the network
- if not then a communication is sent to the tracking server
and another client is spawned to cover the users not being
tracked by its disabled peer. As information packets come in
from the server to each tracking client, the client attempts
to determine if the packet should be re-transmitted to the



server for storage in the central database.

Another tracking effort that is currently being explored is
that of monitoring inter-user communication. One resource
offered by most Instant Messages networks (and exclusively
by others, see IRC) is that of a public chat room. A tracking
client has the ability to connect to one of these rooms as a
spectator, simply to view the flow of conversation. Similar to
how the server performed by sending data packets concern-
ing a user’s status change, the server will also send packets
detailing messages being publicly sent from one user to an-
other within this chat room setting. As with status changes
these packets are verified for integrity and then passed along
to the tracking server for subsequent storage. Packet in-
tegrity is verified by checking the information against the
previously collected packets, making sure that no duplicate
packets are transmitted to the server.

An advancement has recently been made by the AOL Instant
Messaging network to allow a user to connect to the net-
work from multiple locations using multiple clients. Using
this pseudo-proxy, AOL displays only the users most-active
(The order of activeness being: Online, Idle, Away, Away
and Idle) connection to other users of the network. How-
ever, clients at equal states of activity receive all incoming
communications. This advancement is very important due
to the fact that now it is possible to spawn tracking clients
for willing users of the network and provide them additional
intelligent services on top of their normal Instant Messag-
ing experience. It is expected that other Instant Messaging
services will soon follow suit with a similar feature - due to
which additional services can then be provided to the users
of those networks.

To our understanding there are two major issues that need
to be resolved for IMSCAN:

e Scalability: The IMSCAN framework is a distributed
tracking client framework with a centralized tracking
and database servers. Potentially, there indeed are
scalability concerns when tracking a massive number of
users in large IM networks. We have tried to address
this problem as ’elegantly’ as currently possible and are
looking into other effective models. In the current im-
plementation, a tracking client is capable of montoring
a maximum of 200 individual users. Each user needs to
be tracked by only one tracking client (unlike the IM
client where each client has to monitor the status of all
other clients in the buddy-list). This significantly re-
duces the number of tracking clients required. Adding
more users will entail adding more tracking clients, but
since very few users actually have the maximum al-
lowed (200) friends, it has currently not been an issue.
The database server needs to handle a batched update
from each tracking client on a regular basis (say every
1 minute), but this has not been a bottleneck since an
update is needed only if there is a status change indi-
cated and much of the data can be filtered out.

e Privacy: The data collection for the purpose of this
study was non-obtrusive and did not collect any per-
sonal or demographic information about the partici-
pants. We have utilized the functionality provided by
the current IM networks where tracking user status is

based on an open communication protocol. The cur-
rent IMSCAN architechture currently supports AIM
and IRC and users for Yahoo! and Microsoft MSN-
Messenger have to opt-in and add our tracking client
to their buddy list. We also do not track any inter-user
chat initiations and conversations. Our objective was
to purely discern and explore the kind of information
that can be obtained from simple status logs.

NOTE to Reviewers: We can provide the experimental
details on how many IMSCAN tracking clients can be
supported on a single server before the final submission.



